Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 21: 5719-5737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074470

RESUMO

In recent decades, antimicrobial peptides (AMPs) have held great promise as novel antibiotic agents. However, they have generally been excluded from clinical use due to certain limitations, such as poor biocompatibility and sensitivity to environmental conditions. In this study, we report a novel brevinin-1 type antimicrobial peptide B1LTe, derived from the skin secretion of Hylarana latouchii. Although the novel peptide B1LTe exhibited remarkable antimicrobial effects, its narrow therapeutic index (TI) can result in adverse drug reactions. Thus, the rational design by systematically scanning and replacing the inherent hydrophobic and cationic residues (Leucine and Lysine) with their D-enantiomeric counterparts was conducted to enhance the application potential of B1LTe. Simultaneously, we also applied lysine-to-arginine substitution within the modification. Among the derivates, 5 R demonstrated the highest selectivity and effectiveness against Methicillin-resistant Streptococcus aureus (MRSA), clinic-isolated Streptococcus pyogenes (S. pyogenes) strain, ranging from their planktonic to biofilm cells, both in vitro and in vivo. Furthermore, the remarkable adaptation of 5 R in saline and 20% serum indicates its potential for clinical application. We employed the in silico approach, which revealed the mechanism of interaction between 5 R and bacterial membranes. In addition, further mechanistic studies of 5 R elucidated the association between the collapsed proton motive force (PMF) and membrane perturbation as peptides aggregate on the bacterial membrane. Overall, our study suggests the D-enantiomeric 5 R can be a promising antibiotic agent against MDR bacteria in further clinical development and highlights the significance of cellular PMF as a potential target for the research of peptides' mode of action.

2.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833918

RESUMO

Antimicrobial peptides have gradually attracted interest as promising alternatives to conventional agents to control the worldwide health threats posed by antibiotic resistance and cancer. Crabrolin is a tridecapeptide extracted from the venom of the European hornet (Vespa crabro). Its antibacterial and anticancer potentials have been underrated compared to other peptides discovered from natural resources. Herein, a series of analogs were designed based on the template sequence of crabrolin to study its structure-activity relationship and enhance the drug's potential by changing the number, type, and distribution of charged residues. The cationicity-enhanced derivatives were shown to have improved antibacterial and anticancer activities with a lower toxicity. Notably, the double-arginine-modified product, crabrolin-TR, possessed a potent capacity against Pseudomonas aeruginosa (minimum inhibitory concentration (MIC) = 4 µM), which was around thirty times stronger than the parent peptide (MIC = 128 µM). Furthermore, crabrolin-TR showed an in vivo treatment efficacy in a Klebsiella-pneumoniae-infected waxworm model and was non-toxic under its maximum MBC value (MIC = 8 µM), indicating its therapeutic potency and better selectivity. Overall, we rationally designed functional peptides by progressively increasing the number and distribution of charged residues, demonstrating new insights for developing therapeutic molecules from natural resources with enhanced properties, and proposed crabrolin-TR as an appealing antibacterial and anticancer agent candidate for development.


Assuntos
Peptídeos Antimicrobianos , Vespas , Animais , Peptídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Venenos de Vespas/química , Testes de Sensibilidade Microbiana
3.
Comput Struct Biotechnol J ; 20: 6192-6205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420150

RESUMO

Antimicrobial peptides (AMPs), one of the most promising next-generation antibiotics to address the problem of antibiotic-resistance, have gained increasing attention in recent decades. However, some bottlenecks, such as high manufacturing costs and high toxicity, have greatly hindered their development. To overcome these problems, we developed an efficient modification approach to find the valid active-core fragments of AMPs by mimicking the cleavage process of trypsin-like specificity proteases in silico, and truncating the peptide. Herein, we used the structure of a novel AMP, palustrin-2LTb, as the template and synthesised a set of interceptive peptides using computer-aided design and prediction. Functional screening data indicated that truncated fragment 3 not only maintained and optimised antimicrobial efficacy of the parent peptide but also showed great in vivo therapeutic potential in an MRSA-infected insect larvae model. Overall, the demonstration of the therapeutic efficacy of fragment 3 showcases the efficiency of our approach for future modification of AMPs.

4.
Front Mol Biosci ; 9: 953974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36250016

RESUMO

Mammalian bombesin-like neuropeptides (BLPs) play an important role in regulation of physiological and pathophysiological processes. Frog skin-derived BLPs, of smaller size and diverse lengths and sequences at their N-terminus, have attracted the attention of many researchers. However, these N-terminal variants and the receptors modulating their pharmacological actions are poorly studied and less understood. In this study, two BLPs, namely, [Asn3, Lys6, Thr10, Phe13]3-14-bombesin and [Asn3, Lys6, Phe13]3-14-bombesin with primary structures NLGKQWATGHFM and NLGKQWAVGHFM were isolated from the skin secretion of hybrid Pelophylax kl. esculentus. Both BLPs share a similar primary structure with only a single amino acid substitution at the eighth position (threonine to valine), while they have quite different myotropic potencies with EC50 values in the range of 22.64 ± 9.7 nM (N = 8) to 83.93 ± 46.9 nM (N = 8). The potency of [Asn3, Lys6, Thr10, Phe13]3-14-bombesin was approximately 3-fold higher than that of [Asn3, Lys6, Phe13]3-14-bombesin. Through the investigation of receptor selectivity using a canonical bombesin receptor antagonist, it was found that [Asn3, Lys6, Thr10, Phe13]3-14-bombesin and [Asn3, Lys6, Phe13]3-14-bombesin had an affinity to both BB1 and BB2 receptors. Their contractile functions are mainly modulated by both BB1 and BB2 receptors on rat urinary bladder and BB2 alone on rat uterus smooth muscle preparations. These data may provide new insights into the design of potent and selective ligands for bombesin receptors. Moreover, [Asn3, Lys6, Thr10, Phe13]3-14-bombesin and [Asn3, Lys6, Phe13]3-14-bombesin did not induce significant hemolysis and toxicity in normal human cells, suggesting that these two natural novel BLPs have great potential for development into new drug candidates.

5.
Antibiotics (Basel) ; 11(2)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35203845

RESUMO

Due to the abuse of traditional antibiotics and the continuous mutation of microbial resistance genes, microbial infections have become serious problems for human health. Therefore, novel antibacterial agents are urgently required, and amphibian antimicrobial peptides (AMP) are among the most interesting potential antibacterial leads. In this research, a novel peptide, named kassporin-KS1 (generically QUB-1641), with moderate antibacterial activity against Gram-positive bacteria, was discovered in the skin secretion of the Senegal running frog, Kassina senegalensis. Using site-specific sequence enrichment with a motif "glycine-lysine" that frequently occurs in ranid frog temporin peptides, a series of QUB-1641 analogues were synthesized, and effects on selected bioactivities were studied. The greatest activity enhancement was obtained when the "glycine-lysine" motif was located at the eighth and ninth position as in QUB-1570.QUB-1570 had a broader antibacterial spectrum than QUB-1641, and was eight-fold more potent. Moreover, QUB-1570 inhibited S. aureus biofilm most effectively, and significantly enhanced the viability of insect larvae infected with S. aureus. When the "glycine-lysine" motif of QUB-1570 was substituted to reduce the helix ratio and positive charge, the antibacterial activities of these synthetic analogues decreased. These data revealed that the "glycine-lysine" motif at positions 8 and 9 had the greatest enhancing effect on the antibacterial properties of QUB-1570 through increasing positive charge and helix content. This research may provide strategies for the site's selective amino acid modification of some natural peptides to achieve the desired enhancement of activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...